Le raisonnement par récurrence

a marqué ce sujet comme résolu.

Le souci c'est que ça fait introduire des termes techniques non nécessaires à la compréhension du principe de récurrence. Ce tutoriel est majoritairement destiné à des lycéens, la plupart desquels se contrefichent du vocabulaire technique.

Je pense donc opter pour le terme « résultat », « propriété » donnant l'impression d'être attaché à un objet particulier.

+0 -0

Le souci c'est que ça fait introduire des termes techniques non nécessaires à la compréhension du principe de récurrence. Ce tutoriel est majoritairement destiné à des lycéens, la plupart desquels se contrefichent du vocabulaire technique.

Vayel

Je serai pour le mettre au moins une fois avec la définition. Parce que le lecteur risque de rencontrer ce terme s'il lit un autre ouvrage sur le sujet.

De mémoire, je n'ai modifié que le second extrait ("Le raisonnement par récurrence"). Il manque quelques exemples, mais je mets à jour la bêta pour voir si l'approche convient.

Merci. ^^

+0 -0

Bonjour les agrumes !

La bêta tutoriel « Le raisonnement par récurrence » a été mise à jour et coule sa pulpe à l'adresse suivante :

Merci d'avance pour vos commentaires.

+0 -0

Hello !

Je propose de passer au format moyen-tutoriel, avec le plan suivant :

  • Le principe de récurrence
    • Un principe naturel
    • Le raisonnement par récurrence
  • Pratiquons
    • Récurrence ou pas ?
    • Raisonnons par récurrence
    • Contre-exemple
  • Aller plus loin (un titre plus original ?)
    • Démonstration du principe
    • D'autres types de récurrence

Moi, par MP

+0 -0

Hello !

Je propose de passer au format moyen-tutoriel, avec le plan suivant :

  • Le principe de récurrence
    • Un principe naturel
    • Le raisonnement par récurrence
  • Pratiquons
    • Récurrence ou pas ?
    • Raisonnons par récurrence
    • Contre-exemple
  • Aller plus loin (un titre plus original ?)
    • Démonstration du principe
    • D'autres types de récurrence

Moi, par MP

Vayel

J’ai raté ce message. Je pense que passer au format moyen-tuto est une bonne idée. Ça permet un meilleur sectionnement et d’aérer le tout, mais, les chapitres risquent d’être un peu vide, non ?

+0 -0

Bonjour les agrumes !

La bêta a été mise à jour et décante sa pulpe à l’adresse suivante :

Merci d’avance pour vos commentaires.


Réécriture complète de la première partie, le reste n’a pas été touché. J’aimerais des retours sur la clarté des explications. :)

+0 -0

Bonjour les agrumes !

La bêta a été mise à jour et décante sa pulpe à l’adresse suivante :

Merci d’avance pour vos commentaires.


La première partie est achevée. @Holosmos, @Karnaj : pensez-vous qu’on puisse demander une validation partielle ? Je ne me sens pas de travailler sur la suite du tutoriel dans l’immédiat.

+0 -0

Dans l’idéal oui, mais il n’y a pas eu signe de vie sur ce sujet depuis ma précédente mise à jour. @Aabu penses-tu qu’il faille annoncer ce besoin dans le récap' communautaire #5 ?

@Karnaj, c’est la dernière version. ^^

+0 -0

@Aabu, ça pourrait prendre cette forme :

Le tutoriel sur le raisonnement par récurrence a été remanié et attend patiemment vos retours en bêta. Seule la première partie ("Le principe de récurrence") a été revue pour l’instant.

Les auteurs souhaiteraient des commentaires à la fois sur l’approche et le fond, idéalement de la part du public visé : les lycéens. Même si vous n’avez pas le temps de vous en occuper tout de suite, n’hésitez pas à manifester votre intérêt dans le sujet de bêta.

Nous vous remercions par avance pour votre aide. :)

+0 -0

Bonjour, J’ai lu l’intro et le premier chapitre, ça me semble bien, quelques remarques

  • Je mettrais au moins un lien vers wikipédia sur le nom de Gauss, je ne pense pas que tout lycéen le connaisse.

  • je sais pas si un lycéen va comprendre "valeur de vérité" dans l’intro

  • il faudrait insister un peu sur la première fois qu’apparaît le mot hypothèse. Sinon, quelqu’un étranger au contexte de la récurrence va se demander pourquoi ce n’est pas juste "nous voulons montrer que" qui est utilisé,

  • il doit manquer quelques mots ou des accents dans "On note cela PnPn+1P_n \implies P_{n+1}, prononce … et le prouve ainsi :"

  • "sans autre hypothèse sur nn que sa nature d’entier" il faudrait préciser où cette hypothèse intervient, ou alors juste mettre "pour un n entier quelconque",

  • j’aime beaucoup les dominos, on m’avait appris avec une échelle, mais c’est moins parlant,

  • l’initialisation et l’hérédité prouvée s

  • je rajouterais une explication au fait que l’on applique une récurrence uniquement sur des ensembles numérotés (il faut être capable de trouver le suivant).

Je trouve ça bien écrit, bien compréhensible.

Bonjour les agrumes !

La bêta a été mise à jour et décante sa pulpe à l’adresse suivante :

Merci d’avance pour vos commentaires.


Merci pour ton retour @oddocda. Tes remarques ont été prises en compte. J’ai enlevé la mention à la valeur de vérité dans l’introduction vu que ça ne me semble pas nécessaire de l’inclure explicitement dans les pré-requis.

+0 -0
Ce sujet est verrouillé.