Trouver les composantes d'un vecteur dans un prisme

Le problème exposé dans ce sujet a été résolu.

Bonjour, je fais encore de l'algèbre linéaire/géométrie vectorielle et je bloque de nouveau. Il y a un prisme rectangulaire à base triangulaire dont les sommets d'un triangle sont A(0,5,-1), B(1,3,0) et C(3,6,2), et les sommets de l'autre triangle sont DEF (D est vis-à-vis A, E vis-à-vis B et F => C). Le segment CF mesure $4\sqrt2$ unités. Je cherche les composantes du vecteur CF. J'ai pensé utiliser Pythagore avec sa norme, mais cela ne fonctionne pas. La projection orthogonale aussi m'est passée par la tête, mais je ne peux projeter sur rien. Et puis me semble qu'on ne peut pas trouver un vecteur perpendiculaire en 3D, vu qu'il en existe une infinité. Si je trouve ces composantes, j'aurai beaucoup plus de facilité à faire le reste de mon exercice. Merci d'avance pour votre aide!

+0 -0

À vue de nez, comme ça, je dirais que tu peux conclure car le vecteur CF doit être orthogonal à tous les vecteurs du plan (ABC), donc en particulier il est orthogonal à AC et BC, dont tu connais les coordonnées. À coups de produits scalaires, tu peux te ramener à résoudre un système linéaire dont les inconnues seraient les coordonnées du point C.

Connectez-vous pour pouvoir poster un message.
Connexion

Pas encore membre ?

Créez un compte en une minute pour profiter pleinement de toutes les fonctionnalités de Zeste de Savoir. Ici, tout est gratuit et sans publicité.
Créer un compte