On peut être plus général que ça, voir le message plus haut où je l’ai écrit pour une racine quelconque. Étendre ça à un polynôme d’ordre n est ensuite bien sûr trivial.
Tu as raison, le problème est "mal formulé". Je n’ai pas caché que c’était volontaire.
J’ai écrit que j’avais fait tout mon possible pour vous berner.
Si je formule plus proprement, par exemple,
si j’avais écrit directement (6’) X3-1=0 , alors les gens auraient pensé que : x3-1 = (x-1)(x2+x+1)
c’est à dire l’équation (1) multipliée par (x-1).
Ils se seraient demandé d’où venait ce (x-1).
Pour être encore plus explicite,
si à partir de (4) x3+(x2+x)=0 , au lieu de faire une substitution,
je soustrais membre à membre (1), obtenant ainsi directement (6),
on voit plus clairement qu’au final j’ai multiplié l’équation (1) par (x-1).
P.S. en plus, j’ai été de mauvaise foi.
Sur le remarque de Freedom à propos de l’implication, j’ai écrit
"je ne vois pas ce qu’il y a de mal dans cette procédure".
Bien sûr, je sais qu’il ne faut pas faire un implication et ensuite faire comme si c’était une équivalence !
ça met en évidence une erreur de logique qui remet en cause la conclusion 3=0,
ça n’explique pas comment x-1 apparaît
Connectez-vous pour pouvoir poster un message.
Connexion
Pas encore membre ?
Créez un compte en une minute pour profiter pleinement de toutes les fonctionnalités de Zeste de Savoir. Ici, tout est gratuit et sans publicité.
Créer un compte